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An approximate mathematical model, allowing calculation of heat and mass transfer processes in 
metal-hydride hydrogen accumulators, is given. Its range of application is" analyzed using an asymptotic 
expansion of the nonstationary problem of heat and mass transfer with phase transition in terms of a small 
parameter. 

Presently it is believed that one of the most promising methods for storing hydrogen is its accumulation in 
intermetallide hydrides due to a reversible sorption-desorption reaction [ 1] (LaNi 5 is used most often). Metal hydride elements 
are also the basic parts of thermochemical hydrogen compressors [2]. 

To design the metal-hydride elements, it is important to have a simple and dependable mathematical model which 
allow a description, with sufficient accuracy, of the processes occurring during their operation. Studies [3, 4] propose the 
most complete mathematical model by taking into account the heat transfer by heat conduction and convection, the hydrogen 

filtration and diffusion, and the kinetics of a hydrogenation reaction. The energy equation involves rapidly oscillating 
coefficients since the heat transfer proceeds in a porous hydride matrix. Averaging of this equation and calculation of the 
effective thermal conductivity are dealt with in [5]. 

The processes of heat transfer and hydrogen filtration are defined by parabolic partial differential equations. The 
model considered is essentially nonlinear because of the presence of a sorption-desorption reaction. All this makes 
calculations by the complete model complicated and decreases its usefulness. At the same time, it is known [6] that for many 
intermetallides (including LaNis) the sorption-desorption reaction is not the limiting stage, it proceeds fast enough for the 
process to be assumed quasi-equilibrium. Moreover, at a specified pressure, the reaction proceeds with almost constant 
temperature. In practical units, the processes of heat transfer and filtration go on very slowly because of the low thermal 
conductivity of the hydride and the high heat of the hydrogenation reaction and, hence, they are close to stationary. 

It is desirable to use these facts for simplifying the mathematical model. Studies [6, 7] suggest a frontal model of heat 
transfer, according to which the hydrogenation~ reaction occurs over the surface (front) of phase transition rather than in an 
intermetallide region. 

To describe the heat transfer processes, use is made of a quasi-stationary approximation [8, 9], according to which 
the temperature profile is predicted not from the parabolic but rather from the corresponding elliptic energy equation. 
Adequacy of the frontal model and its applicability conditions are studied analytically in [4] and numerically in [10]. 

The indicated approach permits an utmost simplification of the mathematical model and an analytic description of the 
dynamics of thermal processes in the operation of the metal hydride element. However, it does not allow for hydrogen 
filtration, which has a noticeable effect on element dynamics with small porosity and particle size of the hydride. During the 
element operation, crushing and compaction of the metal hydrate powder occur; therefore, the filtration influence increases with 
time. 

The current study simultaneously analyzes the heat transfer and filtration processes based on the frontal model. Both 
processes are described using a quasi-stationary approximation. This enables the reduction of the model to equations 
involving only ordinary derivatives. Finally, we obtain conditions whose fulfillment makes the employment of the 
quasi-stationary approximation reasonable. 
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1. Diagram of thermal and filtration 
fluxes and fields in the element. 

1. Derivation of the Approximate Model. The calculation will be performed for the most frequently used 

metal-hydride elements of cylindrical shape. Let us examine in detail the calculation technique for thermodynamic elements 
operating in the mode of hydrogen sor~tion and heat transfer to the surrounding medium. Hydrogen is supplied from the 
inner cylindrical surface, here we use conditions of the first-kind as to pressure. Heat removal is effected from the outer 
cylindrical surface, with boundary conditions of the third kind. Figure 1 shows a calculational diagram. 

The stationary equation of filtration in cylindrical coordinates has the form 

Or P p = O, , r Or 

whose solution is p2 = A~ln r + A 2. 
The mass flux density of hydrogen moving to the phase transition surface is determined according to the Darcy law 

by the pressure gradient on the front: 

T Or ~=~f' 

where rf is the radius of the phase transition front, and a, in accordance with [11], is equal to 

I/8 d 2 1 
c r = h  t' 

On the other hand, this flux is governed by the sorption rate, which, in turn, depends on the velocity of the phase 

transition front ff 

jf = - -  6 r f ,  (2) 

where 

~ m a x  - -  ~0  

2Mh PhMH,. 

By equating expressions (1) and (2), we arrive at the equation for rf(t) 

A~ = 6rf. (3) 
Tf  rf  
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Fig. 2. Relations r/(t) (curves 1, 2, and 3) and pdt) (curves 1', 2', and 3'): 1, 1') H = 
0.2, d = 5"10 -6 m; 2, 2') 17 = 0.15, d = 4"10 -6 m; 3, 3') II = 0.13, d = 3"10 -6 m. 

Fig. 3. Relations Tf(t) (curves 1, 2, and 3) and q(R 2 ,t) (curves 1', 2', and 3'): 1, 1') 
II = 0.2, d = 5"10 -6 m; 2, 2') II = 0.15, d = 4"10 -6 m; 3, 3') II = 0.13, d = 
3" 10 -6 m. 

The integration consmnt At is  obmined from the boundary conditions 

at r = R 1  A x l n R l + A ~ = p ~ ,  
9 

at r = r f  A l l n r f - k A 2 = p } ,  

whence 

p~__p2f 
Aa . . . .  in (rf/R1) (4) 

Substituting Eq. (4) into Eq. (3) yields 

i f  = _ _  _ _  

2 a Pe-- p2f (5) 
6 Tf,rfln(rf/R1) " 

Equation (5) involves the unknown function p~(re). To define it, we write the equation for /'e proceeeding from the 
analysis of thermal processes (only filtration processes were analyzed in deriving Eq. (5)). 

A stationary heat conduction equation in cylindrical coordinates is of the form 

OZT 1 OT 
- - +  - -  - - 0 ,  

Or S. r Or 

and its solution is 
T = B11nr+B2. 

The density of the heat flux from the phase transition surface is equal, by the Fourier law, to 

q f j = - - ~  OT ( r f ) = - - ~ ,  B1 
Or rf 
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Fig. 4. Relations ~7(t) (curves 1 and 1'), pf(t) (curves 2 and 2'),  and 

Tf(t) (curves 3 and 3') calculated from the approximate (1, 2, and 

3) and complete (1' , 2 ' ,  and 3') models for Ste = 3.7 • 10 -2 and 
s = 8.9 • 10 .5  . 

The integration constant B~ is found from the boundary conditions 

We obtain 

a t  r = R 2  _ _  ~ B1 = ~ (B1 in R2 + B2 - -  Tm ), 
R2 

a t  r = r f Ba ln r f + B~ = T f . 

q f =  
~,~ (T f - -  Tm) 

r f  (a ln (R2 / r f )  + ~,/R2) 

Alternatively, ff is defined by the hydrogen desorption rate, which leads to the expression 

q f = - -  Erf .  

By equating expressions (6) and (7), we obtain the equation for rf(t) 

r f -  
~ (7 ' f - -  Tm ) 

E r f  (a In (R2/rf)  -}- ~,/Rz) 

Equation (8) involves the unknown function Tf(r0. 

Equating expressions (5) and (8) gives the functional relation pf = f(TO 

2 2 8~, m (Tf -- Tm) 
pf = pe-- -- Tf In (r f/R1) . . . .  

gE (a In (R2/rf)  q- X/R~) " 

On the other hand, it is known 112] that the relation pr(Tf) for equilibrium sorption appears as 

where A = 12.94 and B = 3615 for LaNi 5. 

p f =  t0 5 exp(A - -  B / T f ) ,  

(6) 

(7) 

(8) 

(9) 

(lO) 
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Tf(rf) 

By equating the expressions for pf from Eqs. (9) and (10), we derive a transcendental equation to define the relation 

I" 
10 5 exp (A - -  B/Tf) -~ | p2 

! 
5~, Tf  In (rf/R~). ~ (Tf - -  Tra ) } l/2 

The system (8) and (11) represents the approximate mathematical model of a metal-hydride element and allows the 

calculation of its operation dynamics, given the external pressure, which may be a function of time: po = pe(t). Indeed, with 

the function rf(t) found, the hydrogen and heat flux densities on the hydrogenation front are determined by Eqs. (2) and (7). 

Since the pressure and temperature fields are assumed to correspond to the stationary distribution at each time instant, 
densities of these fluxes at the inner and outer cylindrical boundaries of the element are determined by a simple conversion: 

j (R1)= ]frflR1, q(R2) = qfrf/R2. 

Unlike the complete model, the approximate one does not incorporate partial differential equations and is much more 

simple to use for analysis and solution. To expedite the calculation, it is reasonable to differentiate the transcendental 

equation (I l) with respect to time and to express the derivative Tf in explicit form. The resulting system of two ordinary 

differential equations of the first order is convenient to solve by the Runge-Kutta method. To determine the initial value of 

Tf, the transcendental equation (11) must be solved once at rf = R 2. 
Figures 2 and 3 show calculated results for the dynamics of processes occurring in charging the metal hydride element 

with LaNi 5. The calculations were conducted for R2 = 0.01 m, R1 = 0.4R2, Tm = 273 K, ot = 50 W/(m2.K), and Pe = 2"105 
Pa. 

As follows from the figures, the relative radius of the hydrogenation front ~7 = rf/R2 decreases monotonically in time 

from 1 at the initial time instant when the reaction proceeds on the outer cylindric surface of the accumulator, rf = R 2, to 0.4 

when the reaction terminates on the inner surface, r r = R~. The hydrogenation front pressure in the beginning of the process 

is minimal, since hydrogen has to filter throughout the intermetallide layer. At the final time instant, the front pressure is 

equal to the external pressure Pc because the filtration length at rf = R 1 is zero. The hydrogenation front temperature rises 

during the process, causing an increase in the temperature drop between the front and the cooling medium. This compensates 

for increasing distance between the front and the surface r = Rz, wherefrom the heat flux is removed to the medium. 

Interestingly, for the modes corresponding to curves 2' and 3' (Fig. 3), the density of the heat flux removed to the 

medium q(Rz) does not decrease, as would be the case if the calculation were carried out without taking account of the 

filtration, but rather increases in time. This indicates that the limiting stage for the calculated modes is exactly the filtration 

rather than the heat transfer. The conditions, for which curves in Figs. 2 and 3 are plotted, differ by the intermetallide 

porosity and mean particle diameter. As is evident from the figures, a decrease in II and d by as little as 20-25% prolonges 

the charging by 1.5-2 times. All this points to a marked effect of the filtration processes on the element operation and the 
importance of their consideration in the mathematical model. 

2. Applicability Conditions of the Mathematical Model. To produce the conditions, under which the 

quasi-stationary approximation is correct to apply for simplifying the model, let us use the fact that the appropriate solution 

is a zeroth-order approximation in the expansion of the solution for the relevant problem in terms of a small parameter. 

Studies [13, 14] obtained the expansion of the solution to the problem of heat conduction with phase transition in terms of a 

small parameter, which is the Stefan number Ste. The zeroth-order approximation is close to the problem solution if the small 

parameter to the first power is much smaller than unity. Therefore, applying the quasi-stationary approximation to the energy 
equation is justifiable, if the following condition is fulfilled: 

CAT (12) 
Ste = << I. 

E 

As a characteristic temperature drop AT, it is convenient to choose the evaluation of the maximal temperature drop 
in the element (Tf --  Tin) .... �9 
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Physically, the Stefan number is the ratio of the hydride heat retentivity to the heat of the hydrogen 
sorption-desorption reaction. If the heat retentivity is negligible relative to the reaction heat, it may be assumed that a 
stationary temperature distribution is established at each time instant, i.e., the quasi-stationary distribution may be utilized. 

An analog of the Stefan number for the filtration equation is the quantity c, having the physical meaning of the ratio 
of the gaseous hydrogen mass, which can be accumulated in hydride pores, to the hydrogen mass, which can be isolated as 

a result of the reaction. Accordingly, applying the quasi-stationary approximation to the analysis of filtration processes has 
grounds if the amount of hydrogen, which can be accumulated in pores, is negligible as compared with the amount of 
hydrogen, which can be isolated in desorption, i.e., the following condition is satisfied 

8 
(13) 2Mh IIAp.= (~ 1. 

ph(nmax - -  no) RT 

As Ap, we take the evaluation of the maximal pressure drop in the element (p~ -- pf),,,• 

With condition (13) fulfilled, it may be assumed that the pressure field at each time instant has managed to relax to 
a steady state. 

Hence, the approximate model is valid when the following conditions are satisfied: the process is quasi-stationary, the 
frontal model is suitable, and the quasi-stationary approximation is applicable, i.e., conditions (12) and (13) are fulfilled. 

When these conditions are fulfilled, the operation dynamics of the metal-hydride element is defined by Eqs. (8) and 
(11). As the analysis in [4, 6, 7, 10] reveals, the first two conditions are satisfied for the elements with LaNi 5. The 

fulfillment of the third condition for a specific operation mode of the element is checked readily using Eqs. (12) and (13). 
3. Comparison of Predictions from the Approximate and Complete Models. To solve equations of the complete 

model (assuming that the sorption-desorption reaction proceeds over the front), use was made of a finite difference scheme of 
the predictor-corrector type [5, 15, 16], permitting the consideration of the phase transition through the solution correction at 
each time step rather than through iterations. The application of this scheme instead of traditional iteration reduced the 
calculation time by severalfold. 

Figure 4 shows the dynamics of charging the cylindrical thermodynamic element with LaNi 5 at R2 = 0.01 m, R1 = 
0.4R?, T,, = 273 K, a = 50 W/(m2'K), p~ = 2" 105 Pa, II = 0.2, and d = 5.10 -6 m. Since the criteria Ste and e are much 

smaller than unity in this case, the process is described well by the approximate model, which is clear from proximity of the 

curves derived by calculations using the complete and approximate models. The distance between the curves grows slightly 

with time. However, the relative error is not greater than 5%. 
Thus, we have proposed the approximate mathematical model, which makes it possible to predict the heat and mass 

transfer in metal-hydride elements. Its range of application is limited by small values of the criteria Ste and e. We have 
compared predictions from complete and approximate models. 

We would like to note that the solution for the approximate model equations may be regarded as a zeroth-order 
approximation in the asymptotic expansion of the solution for the complete model equations (with no account of the kinetics) 
in terms of small parameters Ste and e. If necessary, higher-order terms of the expansion may be derived using a perturbation 

method [13, 14]. 

NOTATION 

p, pressure, Pa; T, temperature, K; t, time, sec; r, running radius, m; R 1, inner radius of the element, m; R2, outer 

radius of the element, m; q, heat flux density, W/mZ; j, mass flux density of hydrogen, kg/(m2"sec); M, molecular mass, 
kg/kmole; II, porosity, vol. frac.; p, density, kg/m3; /~, dynamic viscosity of hydrogen, Pa'sec; X, thermal conductivity, 
W/(m.K); • bound hydrogen content of the hydride, katom H/kmole LaNis; E, specific volume heat of the hydrogenation 

reaction, j/m3; 15 , = 8314 J/(kmole.K), universal gas constant; h, empirical filtration coefficient, h = 2.37 x 10 .3 for LaNis; 

e~, coefficient of heat transfer to the medium, W/(m2"K); d, mean diameter of the hydride particles, m; Ste and c, small 

parameters. Indexes: H 2, gaseous hydrogen in the hydride pores; h, hydride; m, medium; f, hydrogenation front; 0, initial 

value; max, maximal value; e, external pressure. 

1247 



REFERENCES 

. 

2. 

. 

4. 
5. 
6. 
7. 

. 

9. 
10. 

11. 

12. 

13. 
14. 

15. 
16. 

S. Suda, Int. J. Hydrogen Energy, 12, No. 5, 323-331 (1987). 
V. A. Popovich, A. I. Ivanovskii, V. V. Solovei, and A. A. Makarov, Voprosy Atomn. Nauki Tekhn., Ser. 
Atomno-Vodorodn. l~nerg. Tekhnol., Issue 3 (1987), pp. 56-58. 
H. Choi and A. Mills, Int. J. Heat Mass Transfer, 33, No. 6, 1281-1288 (1990). 
V. M. Liventsov and A. V. Kuznetsov, Inzh.-fiz. Zh., 60, No. 6, 928-936 (1991). 
V. M. Liventsov and A. V. Kuznetsov, Izv. Akad. Nauk SSSR, l~nerg. Trans., 37, No. 2, 148-158 (1991). 
G. A. Fateev, in: Physicochemical Processes in Power Units [in Russian], Minsk (1983), pp. 52-83. 
G. A. Fateev, A. I. Cheklina, and V. K. Shchitnikov, Izv. Akad. Nauk SSSR, Ser. Fiz.-l~nerg. Nauk, No. 3, 26-30 
(1981). 
R. Viskanta, Solar Heat Storage: Latent Heat Materials, 1, 153-218 (1983). 
A. V. Lykov, Heat Conduction Theory [in Russian], Moscow (1967). 
G. A. Fateev, in: Heat and Mass Transfer in Electrochemical Power Generators [in Russian], Minsk (1981), pp. 
22-23. 
A. N. Artemenko and V. Yu. Stepanov, Vopr. Atomn. Nauki Tekh., Ser. Atomno-Vodorodn. l~nerg. Tekhnol., 
Issue 1 (1987), pp. 85-87. 

I. L. Varshavskii and V. V. Solovei, Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 4, 80-83 (1980). 
M. Prud'homme and Nguyen T. Hung, Int. J. Heat and Mass Transfer, 32, No. 8, 1501-1515 (1989). 
M. Prud'homme, Nguyen T. Hung, and Nguyen D. Long, Trans. ASME, J. Heat Transfer, 111, No. 3, 699-705 
(1989). 

Q. T. Pham, Int. J. Heat Mass Transfer, 8, No. 11, 2079-2084 (1985). 
V. M. Liventsov and A. V. Kuznetsov, Probl. Mashinostr. Avtom., No. 3(33), 55-58 (1990). 

1248 


